Pololu 12V, 500mA Step-Down Voltage Regulator D24V5F12

PololuSKU: POL-2846
Price:
Sale price £5.80
incl. VAT
excl. VAT
Stock:
Only 2 units left
Quantity:

Awesome Extras

The Pi Hut Jumper Bumper Pack (120pcs Dupont Wire) - The Pi HutThe Pi Hut Jumper Bumper Pack (120pcs Dupont Wire) - The Pi Hut
Breadboard - 400 Point (Clear) - The Pi HutBreadboard - 400 Point (Clear) - The Pi Hut
The Pi HutHalf-Size Breadboard - Transparent
Sale price £3 incl. VAT excl. VAT
Antex Lead Free Solder - 4m Tube
AntexAntex Lead Free Solder - 4m Tube
Sale price £4.40 incl. VAT excl. VAT

The compact Pololu D24V5F12 synchronous buck voltage regulator takes an input voltage of up to 36V and efficiently reduces it to 12V while allowing for a maximum output current of 500mA.

This regulator offers typical efficiencies between 80% and 90% and has a very low dropout, so it can be used with input voltages as low as a few hundred millivolts above 12V. The pins have a 0.1″ spacing, making this board compatible with standard solderless breadboards and perfboards.


The D24V5Fx family of buck (step-down) voltage regulators generates lower output voltages from input voltages as high as 36V. They are switching regulators (also called switched-mode power supplies (SMPS) or DC-to-DC converters) and have a typical efficiency between 80% to 93%, which is much more efficient than linear voltage regulators, especially when the difference between the input and output voltage is large. These regulators have a power-save mode that activates at light loads and a low quiescent (no load) current draw, which make them well suited for low-power applications that are run from a battery.

The regulators feature short-circuit/over-current protection, and thermal shutdown helps prevent damage from overheating. The boards do not have reverse-voltage protection. If you need more output current, consider the very similar D24V10Fx family of step-down voltage regulators, which can deliver up to 1 A in several different output voltages.

Options Available

We have different versions of this regulator available in the store, listed below. The different versions of this regulator all look very similar, so the bottom silkscreen includes a blank space where you can add your own distinguishing marks or labels:

Features

  • Input voltage:
    • 3 V to 36 V for output voltages of 1.8 V and 2.5 V
    • [output voltage + dropout voltage] to 36 V for output voltages of 3.3 V and higher (see below for more information on dropout voltage)
  • Fixed 12V output with 4% accuracy
  • Maximum output current: 500 mA
  • Typical efficiency of 80% to 93%
  • 500 kHz switching frequency (when not in power-save mode)
  • 200 μA typical no-load quiescent current
  • Over-current and short-circuit protection, over-temperature shutoff
  • Small size: 13 mm × 10 mm × 3 mm

Using the regulator

Connections

The buck regulator has four connections: shutdown (SHDN), input voltage (VIN), ground (GND), and output voltage (VOUT).

The SHDN pin can be driven low (under 0.4 V) to turn off the output and put the board into a low-power state. There is a 100 kΩ pull-up resistor between the SHDN pin and VIN, so if you want to leave the board permanently enabled, the SHDN pin can be left disconnected. While the SHDN pin is being driven low, the current draw of the regulator is dominated by the current through the pull-up resistor and will be proportional to the input voltage. (At 36 V it will draw about 360 μA.)

The input voltage, VIN, powers the regulator. Voltages between 3 V and 36 V can be applied to VIN. The effective lower limit of VIN is VOUT plus the regulator’s dropout voltage, which varies approximately linearly with the load (see below for graphs of dropout voltages as a function of the load). Additionally, please be wary of destructive LC spikes (see below for more information). The output voltage, VOUT, is fixed at 12V.

The four connections are labelled on the backside of the PCB and are arranged with a 0.1″ spacing along the edge of the board for compatibility with solderless breadboards, connectors, and other prototyping arrangements that use a 0.1″ grid. You can solder wires directly to the board or solder in either the 4×1 straight male header strip or the 4×1 right-angle male header strip that is included.

Typical efficiency and output current

The efficiency of a voltage regulator, defined as (Power out)/(Power in), is an important measure of its performance, especially when battery life or heat are concerns.

This family of switching regulators typically has an efficiency of 80% to 95%, though the actual efficiency in a given system depends on input voltage, output voltage, and output current. See the efficiency graph near the bottom of this page for more information.

In order to achieve high efficiency at low loads, this regulator automatically goes into a power-save mode where the switching frequency is reduced. In power-save mode, the switching frequency of the regulator changes as necessary to minimize power loss. This could make it harder to filter out noise on the output caused by switching.

Typical dropout voltage

The dropout voltage of a step-down regulator is the minimum amount by which the input voltage must exceed the regulator’s target output voltage in order to ensure the target output can be achieved.

For example, if a 5 V regulator has a 1 V dropout voltage, the input must be at least 6 V to ensure the output is the full 5 V. Generally speaking, the dropout voltage increases as the output current increases. 

The graphs below show the typical efficiency and dropout voltage of the 12V D24V5F12 regulator as a function of the output current:

LC voltage spikes

When connecting voltage to electronic circuits, the initial rush of current can cause voltage spikes that are much higher than the input voltage. If these spikes exceed the regulator’s maximum voltage (36 V), the regulator can be destroyed. In our tests with typical power leads (~30″ test clips), input voltages above 20 V caused spikes over 36 V.

If you are connecting more than 20 V or your power leads or supply has high inductance, we recommend soldering a 33 μF or larger electrolytic capacitor close to the regulator between VIN and GND. The capacitor should be rated for at least 50 V.

Specifications

Minimum operating voltage 12.1 V
Maximum operating voltage 36 V
Maximum output current 500 mA
Output voltage 12 V
Reverse voltage protection? N
Maximum quiescent current 0.2 mA
Size 0.4″ × 0.5″ × 0.1″
Weight 0.6 g

Resources

Payment & Accreditations

Payment methods
Visa Mastercard Maestro PayPal Amazon Klarna

Your payment information is processed securely. We do not store credit card details nor have access to your credit card information.

Accreditations